4-6 Videos Guide

4-6a

- Notation for triple integrals
- $\iiint_{B} f(x, y, z) d V=\int_{e}^{f} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z$ for $B=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, e \leq z \leq f\}$ (a rectangular box-the 2-D trace is R)
- $\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x$ for $E=\left\{(x . y, z) \mid a \leq x \leq b, h_{1}(x) \leq y \leq h_{2}(x), u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$ (a bounded region in \mathbb{R}^{3}-the 2-D trace is D)

Exercises:

- Evaluate the iterated integral.

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \frac{z}{y+1} d x d y d z
$$

4-6b

- Evaluate the triple integral.
- $\iiint_{E}(x-y) d V$, where E is enclosed by the surfaces $z=x^{2}-1, z=1-x^{2}$, $y=0$, and $y=2$
- $\iiint_{E} z d V$, where E is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=$ 0 ,
$y=3 x$, and $z=0$ in the first octant

4-6c

- Use a triple integral to find the volume of the solid enclosed by the paraboloids $y=x^{2}+z^{2}$ and $y=8-x^{2}-y^{2}$

4-6d

- Sketch the solid whose volume is given by the iterated integral.
$\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y$

4-6e

- The figure (on the next page) shows the region of integration for the integral $\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x$ Rewrite this integral as an equivalent iterated integral in the five other orders.

